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Abstract

We investigate the statistical learning of nodal attribute functionals in
homophily networks using random walks. Attributes can be discrete or
continuous. A generalization of various existing canonical models, based on
preferential attachment is studied (model class P ), where new nodes form
connections dependent on both their attribute values and popularity as measured
by degree. An associated model class U is described, which is amenable to
theoretical analysis and gives access to asymptotics of a host of functionals of
interest. Settings where asymptotics for model class U transfer over to model
class P through the phenomenon of resolvability are analyzed. For the statistical
learning, we consider several canonical attribute agnostic sampling schemes such
as Metropolis-Hasting random walk, versions of node2vec (Grover and Leskovec,
2016) that incorporate both classical random walk and non-backtracking
propensities and propose new variants which use attribute information in addition
to topological information to explore the network. Estimators for learning the
attribute distribution, degree distribution for an attribute type and homophily
measures are proposed. The performance of such statistical learning framework is
studied on both synthetic networks (model class P ) and real world systems, and
its dependence on the network topology, degree of homophily or absence thereof,
(un)balanced attributes, is assessed.

Keywords: attributed networks; homophily; network model; resolvability; random
walk samplings; discrete and continuous attributes; learning attribute functionals.

Introduction
Attributed networks, namely graphs in which nodes and/or edges have attributes,

are at the center of network-valued datasets in many modern applications. For ex-

ample, in real-world network datasets most nodes have values of characteristics of

interest; in social networks, users have attributes such as “gender”, “age”, “lan-

guage”; in citation networks, articles are classified by the main subject, field, sub-

field, keywords. Networks also differ in the range of attributes values (cardinality),

their types (discrete or continuous) and the size of each group. In one direction,

machine learning pipelines such as network representation learning [1], clustering

[2], classification [3], and community detection [4] have been developed to study the

entire network. Another recent direction, specifically related to attributed network

valued data, is the use of attribute information, in addition to graph topological

information, in improving the performance of exploratory data analytic techniques

such as community detection [5] or link prediction tasks [6]. Both papers, through

careful development of methodological analysis using graph regularization and non-

negative matrix factorization, and through detailed empirical analysis, show sig-
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nificant improvement for such machine learning pipelines via incorporating node

attribute information. Driven by the scale of data, the main motivation of this

paper is network sampling, where limited explorations based on random walks are

used to learn network level functionals of attributes.

In real-world networks, the attributes of a node will co-vary and are not inde-

pendent. One standard phenomenon in many such real world systems is homophily

[7, 8, 9], i.e., node pairs with similar attributes being more likely to be connected

than node pairs with discordant attributes. For instance, many social networks

show this property, which is the tendency of individuals to associate with others

who are similar to them; e.g., with respect to the gender, ethnicity, political ide-

ologies. Furthermore, the distribution of user attributes over the network is usually

uneven, with coexisting groups of different sizes, e.g., one ethnic group may dom-

inate others [10]. On the other hand, another co-variation across neighbors is due

to heterophily, where nodes with the same attribute type value repel each other.

Performance of network sampling algorithms in such settings has received some

attention including: the bias of several sampling methods in conserving position

of nodes and visibility of groups [11]; the effect of homophily on centrality mea-

sures and visibility of minority groups and fairness questions [12]. More recently

the synthetic models that motivate this paper were used in [13] to understand the

inequality of node ranking algorithms (e.g. as measured by the Gini coefficient) as

well as inequity (e.g. by contrasting the percentage of a given attribute amongst the

most popular k%-age of nodes with the true demographic percentage of that group),

in particular trying to understand the foundational characteristics of network evo-

lution such as homophily or preferential attachment in (quoting [13]) “reducing,

replicating or amplifying” representation of specific groups by these ranking algo-

rithms. In a different direction, [10] uses these synthetic models to understand the

accuracy of semi-supervised machine learning tasks such as learning/prediction of

attribute labels given partial information on the labels of a subset of seeded vertices;

the goal is to understand the impact of homophily/heterophily and preferential at-

tachment driven growth characteristics of the underlying network on the accuracy

of a host of popular relational classifiers and collective inference algorithms.

This paper is motived by the lack of theoretical results in the analysis of attribute

network models with homophily and the development of a learning framework to

estimate attribute functionals in real networks. We investigate the following research

questions (RQ).

RQ1: How to analyze and extend the existing network models with homophily

and derive the main functionals of interest?

We describe a generalization of the directed preferential attachment model with

homophily (called model class P ) formulated in [12] where new nodes connect

to existing ones based on the attributes of both end points of the potential edge

and centrality of the existing vertex. The network model can generate scale-free

networks with discrete or continuous attributed nodes, and different intensities of

homophily. The dynamics of the network is the following. Starting from a fully

connected cluster of nodes with attributes, each node that arrives has attribute

generated independently according to a given distribution and connects to a fixed

(constant) number of nodes. The probability that a new node connects to an existing
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node is proportional to the product of the degree (to the power of a parameter) with

a function that measures the propensity of the two nodes attributes to interact.

Thus, the model encodes the interplay between the two main mechanisms of tie

formation found in social networks: preferential attachment and homophily. Given

the importance of this model in applications, theoretical analysis of this model

including stability properties of heterophily and homophily statistics are of great

importance; yet till date the only functional amenable to theoretical analysis has

been degree distribution [12, 14]. We describe a related model of network evolution

(called model class U ) which is much more amenable to theoretical analysis and a

phenomenon we term resolvability which enables one to transfer results from model

class U to model class P ; in this paper we specialize to large network limits for

degree distribution for an attribute type and homophily and heterophily statistics,

deferring a full treatment to [15].

RQ2: How to use the existing link trace algorithms to sample the network and

take into account the attributes of nodes?

Uniform random sampling of nodes or edges is the “gold standard”, providing

unbiased estimates of corresponding attribute functionals. However, owing to both

computational and privacy issues in social networks and other settings, such sam-

pling is often infeasible. Other networks that allow random access limit the rate

of API (Application Program Interface) calls implying that creating a sample of

sufficient size takes a prohibitive time. In these cases, link trace sampling, such as

random walks (RWs) are typically used; see references in [16, 17] for estimation of

functionals such as degree distribution and clustering. However, much less is known

in the context of estimating quantities influenced by attribute types in homophily

networks.

In this work, we consider several existing canonical attribute agnostic sampling

schemes proposed in the literature (that do not use the attribute type of nodes

to construct the sample) such as Metropolis-Hasting random walk and versions of

node2vec [18] that incorporate both classical random walk and walks with non-

backtracking propensities. These random walks have been designed to preserve

structural properties of the network in the sample, such as high degree nodes, clus-

tering, diameter and not the different types of node attributes. We are interested

not only in estimating the proportion of nodes with a given attribute but also in the

structural properties of the sub-network spanned by vertices of a specified attribute

type including the degree distribution and homophily measures. Our main contribu-

tion here is to show that random walks that use edge weights can be attribute aware

samplers through the proposal of variants of node2vec where edge weights depend

on attributes of its end nodes. This will be especially useful in homophilic networks

for analyzing geometric properties involving nodes with minority attributes.

RQ3: How to estimate the attribute functionals and homophily measures through

the sampling schemes and evaluate their performance?

We propose estimators for attribute functionals and homophily measures that are

based on correcting the bias of the empirical sample quantities through the use of

stationary distribution of the RWs associated in sampling nodes and edges.

We study the performance of the considered random walk sampling schemes in

terms of estimation error of the attribute distributions and homophily measures
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across the following four dimensions in both synthetic networks using the model

class P and real world settings: (a) Inherent homophilic propensity of the net-

work and underlying density of attributes; (b) Impact of centrality of nodes as

measured by degree in the evolution of the network; (c) Nonlinear impact of in-

corporating “escape echo chamber” mechanisms in random walks by encouraging

walks to jump across edges with discordant attributes; (d) Impact of reducing the

backtracking propensity to encourage walks to explore more of the network. We find

that (i) RWs with attribute dependent weights can perform better over attribute

agnostic RWs in homophilic networks; (ii) the weights need to balance the move-

ments between/within nodes with different/same attributes; (iii) non-backtracking

improves performance, especially in conjunction with attribute dependent weights

and low edge density; (iv) methods seem to work comparably well for synthetic and

real networks.

This paper is a significant extension of the conference paper [19] including: (a)

appreciable expansion of the theoretical developments to the network models de-

scribed in [19], including describing the notion of resolvability of such models which

allows one to connect them to a different class of models for which asymptotic

analysis for a wide range of functionals, such as degree exponent for an attribute

type, homophily and heterophily statistics can be undertaken; (b) substantial ex-

pansion of the methodological development of the paper, including a new class of

functionals (degree distribution for an attribute and homophily measures) to be esti-

mated through network sampling schemes; (c) new network sampling schemes from

node2vec variants; (d) further applications of the methodology developed to new

network data for evaluation and comparison; and (e) a final section with extensions

and future directions of the work.

Attributed Network Models and Homophily Functionals
As described above, synthetic models have been used to great effect in understand-

ing the structure and evolution of attributed networks and the impact of ranking,

sampling and classification algorithms in such settings. The overarching goal in

this section is to describe an extension of the canonical (linear) attributed net-

work models currently considered in the literature. We refer the interested reader

to [12, 13, 10] and the references therein for further discussion on motivations and

use of such models. More concretely in this section:

(a) We will describe the main synthetic model, termed non-linear preferential at-

tachment (NLPA) model with homophily, and referred to for the rest of the

paper as model class P .

(b) We will give concrete formulations of key network functionals measuring ho-

mophily between different groups.

(c) Understanding (large network) asymptotics for model class P is non-trivial.

We will introduce a related model (referred to as model class U ), that seems

significantly more amenable to analysis, formalize a notion called resolvability,

connecting model classes P and U and then describe the explicit results that

can be derived for model class P , at least in the linear case using U . Technical

justifications of these connections can be found in [15].
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Table 1 Summary of the main notation.

Notation Description
P (α, µ, f) model class P (non-linear preferential attachment model with homophily)
A attribute space
µ attribute distribution of an arriving node
α preferential attachment parameter

f(a, a′) propensity of a pair of nodes with attributes a and a′ to interact
m number of edges a new node entering the system connects to pre-existing nodes

degi(v, n) degree of v at time n when i of the edges of vn+1 have connected to the network
U (α, ν, f) model class U

ν resolvable measure
E set of edges of the network
N number of nodes in the network
Va set of nodes of type a
Eaa′ set of edges between nodes of attributes a and a′

Da dyadicity of nodes with attribute a
Haa′ heterophilicity between nodes with attributes a and a′

p(a) proportion of nodes with attribute a
|.| number of elements of a set

p(k|a) proportion of nodes of degree k having attribute a
.̂ estimator of a quantity
di degree of node i
πi probability of sampling node i

π(i,j) probability of sampling edge (i, j)
wij weight of edge (i, j)
θ propensity of N2V to backtrack

γ (β) propensity of a N2V to reach a (non-)common neighbor of the currently visited node
and the previously visited node

δ spectral gap

Fix an attribute (or latent) space A with probability measure µ. Fix a (potentially

asymmetric) function f : A × A → R+ which measures propensities of node pairs

to interact based on their attributes. Fix α ≥ 0 describing the role of degree in

measuring popularity and integer m ≥ 1 denoting the number of edges a new vertex

has when entering the system, to connect to pre-existing vertices. In principle m

could be random and/or dependent on the attribute type, but for simplicity and

to match existing literature (e.g. [12]) we focus on the fixed m setting (see [15] for

results when m is attribute dependent). Let N be the number of nodes (vertices)

in the network. In the model class P , nodes {vn : 1 ≤ n ≤ N} enter the system

sequentially starting at n = 1 with a base connected graph G1 (with every node

having an attribute in A) with dynamics:

(i) Every node vn has attribute a(vn) ∈ A generated independently using µ.

(ii) Node vn enters the system with m edges.

(iii) The dynamics for connecting each of the m edges are recursively defined as

follows: suppose the network has been constructed till stage n with structure

Gn. For any n and 0 ≤ i ≤ m− 1 and v ∈ Gn, let degi(v, n) denote the degree

of v at time n when i of the edges of vn+1 have connected to Gn. Conditional

on Gn and stage i, the probability that the (i+ 1)th edge of vn+1 connects to

v ∈ Gn is proportional to:

Pvn+1v ∝ f(a(v), a(vn+1))[degi(v, n)]α. (1)

Once this edge has connected, all the degrees are updated and the above

dynamics is repeated till all m edges have connected to Gn. When m = 1,

then each new vertex has only one edge to connect to the network and in this

case we write deg(v, n) := deg0(v, n).
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We will refer to this as model class P (or P (α, µ, f) when we want to specify all

the parameters; we suppress dependence onm to ease notation) and sometimes write

{Gn : 1 ≤ n ≤ N} ∼ P (α, µ, f). The model (1) extends various existing models

including: Barabási-Albert model [20] (f ≡ 1, α = 1), sublinear PA [21] (f ≡ 1,

0 < α < 1), PA with multiplicative fitness [22] (f(a, a′) = a, α = 1), scale free

homophilic model [23] (f(a, a′) = 1 − |a − a′|, A = [0, 1], α = 1), and geometric

versions with α = 1, a compact metric space A and an appropriate function f of the

distance [24, 14]. Most existing studies focus on asymptotics for either the degree

distribution or maximal degree.

Homophily functionals

When the latent space A = {1, 2, . . . ,K} is finite, one can define macroscopic

measures of homophily, and conversely heterophily [25], from an observed network

G (either synthetic or empirically observed) on N nodes as follows. Let E denote

the total edge set; for a ∈ A, let Va be the set of nodes of type a, and for a, a′ ∈ A,

let Eaa′ be the set of edges between nodes of types a and a′. Let p = |E|/
(
N
2

)
be the

edge density. For a ∈ A, dyadicity

Da = |Eaa|
/((|Va|

2

)
p

)
(2)

measures the contrast in edges within the cluster of nodes a as compared to a

setting where all edges are randomly distributed; thus Da > 1 signals homophilic

characteristics of type a nodes while Da < 1 signifies heterophilic nature of type a

nodes. Similarly, for a 6= a′, heterophilicity

Haa′ = |Eaa′ |/(|Va||Va′ |p) (3)

denotes propensity of type a nodes to connect to type a′ nodes as contrasted with

random placement of edges with probability equal to the global edge density. If

Haa′ < 1, nodes of opposite labels do not tend to be connected (homophilic); if

Haa′ > 1, there are more connections between nodes of different labels a and a′

(heterophilic).

Illustrations of homophilic synthetic networks of the model class P (α, µ, f) gen-

erated from (1) are given in Fig. 1. The total number of nodes is N = 1000 and each

node has an attribute in A = {1, 2, 3} according to the probability mass function

(p.m.f.) µ = (0.7, 0.2, 0.1); the propensities of node pairs to connect based on their

attributes are f(a, a) = 0.8, f(a, a′) = 0.1, a 6= a′ = 1, 2, 3 and m = 2. The networks

are plotted for different values of α in Fig. 1(a)–1(c). For instance, with α = 0.2,

the corresponding homophily measures are D1 = 1.364, D2 = 3.038, D3 = 7.38,

H12 = 0.336, H13 = 0.386 and H23 = 0.399. Figure 2 shows the case of heterophilic

networks with N = 1000 of the model class P (α, (0.7, 0.2, 0.1), f) for different val-

ues of α with f(a, a) = 0.2, f(a, a′) = 0.4, a 6= a′ = 1, 2, 3 and m = 2. For α = 1,

the homophily measures are D1 = 0.750, D2 = 0.772, D3 = 0.750, H12 = 1.479,

H13 = 1.615 and H23 = 1.873.
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(a) (b) (c)

Figure 1 Networks generated by the model class P (α, µ, f) with homophily where N = 1000,
µ = (0.7, 0.2, 0.1), f(a, a) = 0.8, f(a, a′) = 0.1, a 6= a′ = 1, 2, 3 and m = 2 (a) α = 0.2, (b)
α = 1, (c) α = 1.2.

(a) (b) (c)

Figure 2 Networks generated by the model class P (α, µ, f) with heterophily where N = 1000,
µ = (0.7, 0.2, 0.1), f(a, a) = 0.2, f(a, a′) = 0.4, a 6= a′ = 1, 2, 3 and m = 2 (a) α = 0.2, (b)
α = 1, (c) α = 1.2.

Model class U and rationale

While model class P has been heavily used in applications, deriving large network

asymptotics of functionals is non-trivial. Next we will describe a related network

model (model class U ), the rationale for why this might be more amenable to

analysis, and then formalize situations where given P , one can construct (using as

input the parameters α, µ, f from P ), a corresponding model in class U such that

properties of P can be read off from (the more easily analyzable) U . For most

of this discussion we will only consider the m = 1 setting, albeit the formulae for

asymptotics for various functionals considered below seem to extend, at least in

simulations, in a straightforward manner to general m setting.

Since the general setting (with “continuous” attribute space) is more technical,

let us explain the basic rationale in the simpler discrete setting where S = [K] :=

{1, 2, . . . ,K} so that µ is a p.m.f.. Fix a (potentially and in most cases different from

µ) p.m.f. ν and consider the attributed network model
{
G̃n : n ≥ 0

}
with dynamics:

P
(
a(vn+1) = a?, vn+1  v|G̃n

)
:=

ν(a?)f(a(v), a?)[deg(v, n)]α∑
a∈[K]

∑
v′∈G̃n ν(a)f(a(v′), a)[deg(v′, n)]α

. (4)
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Note that the above model is invariant to scaling in ν, so it will be convenient to

allow ν to be a general weight sequence instead of normalizing it to be a probability

measure.

The above belongs to a general class of models defined below that we will refer to

as U (γ, ν, f). Thus, here the p.m.f. ν plays the role of a weight and further, unlike

the model P where each new arriving vertex has attribute sampled independently

from the current state of the network, here the distribution of new vertices is closely

dependent on the entire state of the current network.

Rationale for technical tractability: Tabling the issue of connection with P
for the next sections, first note that U can be simulated via dynamics where every

vertex essentially behaves independently ((c) below). In brief, if one wanted to

simulate model class U starting from one vertex of type a, then this can be done

as follows:

(a) Every vertex v that enters the system (starting with the root of type a) gives

birth independently to child nodes with attributes in continuous time, connected

to the vertex.

(b) For a node of type a, conditional on its degree d, the rate of reproduction of a

child node of type a′ is ν(a)f(a, a′)dα.

(c) Reproduction dynamics is independent across nodes.

Write {BP(t) : t ≥ 0} for the (continuous time) process and for any n ≥ 1, Tn be the

(random) time such that the size |BP(Tn)| = n. (BP stands for Branching Process.)

Then it is easy to check that {BP(Tn) : 1 ≤ n ≤ N} has the same distribution as{
G̃n : 1 ≤ n ≤ N

}
∼ U (α, ν, f). Further the independence in the evolution makes

this model much more amenable to analysis, yielding asymptotic information for

the process BP and thus the model U .

Resolvability

Note that the main model of interest, both as a synthetic test bed in this paper,

and in pre-existing work, is the model class P . The main goal of this section is to

formalize a connection between model classesP andU . Given
{
G̃n : 0 ≤ n ≤ N

}
∼

U (α, ν, f), for n ≥ 1 define π̃n =
∑n
t=1 δ {a(vt)}, i.e. the empirical measure of

attributes in G̃n.

Now say that model P (α, µ, f) is resolvable if there exists ν such that for the

model class U (α, ν, f), the empirical measures of attribute types satisfy: π̃n → µ

as n→∞. In words, one can chose a weight measure ν such that the corresponding

dynamics for U with the same α and f drives the empirical distribution to the

limiting empirical distribution µ of model class P (since every new vertex has

attribute distribution µ independent of the network evolution).

Resolvability in the linear finite attribute case

The linear case (α = 1) with a finite attributes S = [K] turns out to be completely

resolvable under the following.

Assumption: Assume the sampling measure µ = (µ1, . . . , µK) has all entries

strictly positive and assume the affinity kernel f(a, a′) > 0, ∀a, a′ ∈ [K].

Fix a model class P (α = 1, µ, f) satisfying the above Assumption. Let P([K])

denote the K − 1 dimensional simplex of probability mass functions on [K]. Define



Antunes et al. Page 9 of 26

(in the interior of P([K])) the function:

Vµ(y) := 1− 1

2

∑
j∈S

µj

(
log(yj) + log(

∑
k∈P

ykf(k, j))

)
, y ∈ P([K]).

By [14, P8], under the above Assumption, Vµ(·) has a unique minimizer η := η(µ) =

(η1(µ), . . . , ηK(µ)) in the interior of P(S). Now, define

νa :=
µa∑K

l=1 f(l, a)ηl
, φa,b := f(a, b)νb, φa :=

K∑
b=1

φa,b = 2− µa
ηa
, (5)

where the final identity follows from [14, P8]. Let ν = (ν1, . . . , νK). Then the fol-

lowing paraphrases some of the results in [15]:

(a) Under the above Assumption, model P (α = 1, µ, f) is resolvable with one

resolving measure ν given as above. This implies, in particular, local functionals

(such as degree distribution PageRank) converge to the same limits as those for

U (α = 1, ν, f). Two specific implications are given next.

(b) For each a ∈ [K], the empirical p.m.f. of vertice degrees of type pan
P−→ pa∞

where the limit p.m.f. has tail exponent pa∞(k) ∼ k1+2/φa as k →∞.

(c) Using the objects defined in (5), define the matrix

M =

(
Ma,b :=

φa,b
2− φa

)
a,b∈[K]

. (6)

Then the homophily and heterophily statistics {Dn,a : a ∈ [K]} and
{
Hn,(a,a′) : a 6= a′ ∈ [K]

}
satisfy the asymptotics,

Dn,a
P−→ [M]a,a

µa
, Hn,(a,a′)

P−→ 1

2

[
[M]a′,a
µa

+
[M]a,a′

µa′

]
(7)

Remark 1 Result (b) above was previously derived in [14] using stochastic ap-

proximation techniques.

The results above are illustrated numerically in Fig. 3 and Tables 2 and 3. We

fixed the model class P (1, (0.7, 0.2, 0.1), f), where f(a, a) = 0.8, f(a, a′) = 0.1,

for a 6= a′ = 1, 2, 3 and m = 1. The model is resolvable with resolving measure

ν approximately equal to (0.742, 0.189, 0.069). We generate the model classes P
and U = (α, ν, f) using (1) and (4), respectively, for different network sizes. Fig. 3

shows the degree distributions of attribute 2 for both models which are getting

closer as N increases. In the limit they converge to the same p.m.f.. We fit a power-

law distribution function using a maximum likelihood approach to the empirical

degree distribution tail per attribute of the model class P for each network size.

The respective tail exponents are shown in Table 2 with the asymptotic limit p.m.f.

tail exponent 1 + 2/φa. Finally, the empirical and asymptotic dyadicity and het-

erophilicity measures, respectively, (2), (3) and (7), are given in Table 3. The results

show that complicated functionals of the model class P can be easily approximated

with good precision even for moderate network sizes.
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Figure 3 Degree distribution of attribute 2 under model classes P (α, µ, f) and U (α, ν, f) for
different network sizes N , where α = 1, µ = (0.7, 0.2, 0.1), ν ≈ (0.742, 0.189, 0.069),
f(a, a) = 0.8, f(a, a′) = 0.1, a 6= a′= 1, 2, 3 and m = 1.

Table 2 Tail exponent of the degree distribution per attribute of model class P (α, µ, f) for different
network sizes N and asymptotically (N →∞), where α = 1, µ = (0.7, 0.2, 0.1), f(a, a) = 0.8,
f(a, a′) = 0.1, a 6= a′= 1, 2, 3 and m = 1.

Attribute 1 2 3
Asym. 2.892 3.256 3.782

model class P
N = 5000 2.933 3.352 3.547
N = 10000 2.950 3.230 4.079
N = 30000 2.983 3.310 3.742

Table 3 Homophily measures of model class P for different network sizes N and asymptotically
(N →∞), where α = 1, µ = (0.7, 0.2, 0.1), f(a, a) = 0.8, f(a, a′) = 0.1, a 6= a′= 1, 2, 3 and m = 1.

D1 D2 D3 H12 H13 H23

Asym. 1.369 3.183 4.038 0.3074 0.4059 0.4633
model class P
N = 5000 1.391 3.115 3.961 0.312 0.393 0.4362
N = 10000 1.384 3.226 3.459 0.291 0.433 0.448
N = 30000 1.363 3.185 3.774 0.316 0.415 0.476

Random Walk Samplings in Attributed Networks
Since many real-world networks can only be crawled, in the sense that only the

neighbors of the current visited node can be explored, we consider sampling pro-

cedures that are based on random walks. They are also a core technique for con-

structing various algorithms to extract information on networks, such as community

detection, ranking of nodes and edges, and dimension reduction. We introduce well-

known random walks which are attribute agnostic. These random walks have been

designed to preserve structural properties of the network and not the representa-

tiveness of node attributes in the sample. We are interested (see next section) in

estimating the attribute distribution but also structural properties (node degrees)

depending on the node attributes. We show next that some random walks that

use edge weights can be attribute aware samplers. This will be especially useful in

homophilic networks. Throughout this section, for graph G and node i ∈ G, di will

denote its degree. We assume a static graph and that only limited set of initial seed

nodes i ∈ G that initializes the random walk are available. When we say that a

node is sampled, it means that its attribute a(i) (and degree d(i) dependent on the

quantities of interest) is added to the sample.

Metropolis Hastings Random Walk (MHRW). At each step, if the walk is

currently at node i, a neighbor j is selected uniformly at random and the proposed
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Figure 4 Node2vec node transitions. The random walk has transitioned from k to i and is now
evaluating the next step out of i.

move to j is accepted with probability min(1, di/dj), else the walk stays at i. Thus

proposed moves towards a node of smaller degree are always accepted whilst we

reject some of the proposed moves towards higher degree nodes. It is easy to check

that the stationary distribution is uniform over the node set, i.e.,

πi = 1/N, 1 ≤ i ≤ N. (8)

The stationary distribution over the edge set is

πij =
1

Ndi
, (i, j) ∈ E . (9)

Node2vec (N2V). As proposed in [18], in full generality, the transitions of N2V

depend on the neighborhood both of the currently visited node, and the node visited

prior to the current node. Let the previously and currently visited nodes be k and

i, resp. The next visited node j is chosen according to the transition probability

proportional to:

p(j|k, i) ∝


βwij , k 6= j, (k, j) /∈ E ,
γwij , k 6= j, (k, j) ∈ E ,
θwij , k = j,

where wij is the weight of edge (i, j), θ is the parameter that represents the propen-

sity for the random walk to backtrack, γ is the quantifying probability of reaching

a common neighbor of the currently visited node and the node visited in the last

step, and β is the parameter of exploring any of other neighbor – see Fig. 4. N2V

is a second order Markov chain. We now describe specific variants of this random

walk which includes some classical versions.

Node2vec-1 (N2V-1): If the network is undirected, unweighted and θ = β = γ, one

obtains the classical RW with the well-known stationary distributions,

πi =
di

2|E|
, πij =

1

|E|
. (10)

Node2vec-2 (N2V-2): If the network is undirected and θ = β = γ, one obtains a

weighted RW. This walk can use node attributes through weights in contrast to

N2V-1. We assume that for each sampled node i, we have access to the attributes
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of the neighbors of i. If there is a connection between i and j, the weight wij

is a function of a(i) and a(j). In a homophilic network, setting wij to a lower

value if nodes have equal attributes encourages the sampling of nodes with different

attributes. The stationary distributions in this case are given by

πi =

∑
j wij∑

k

∑
j wkj

, πij =
wij∑∑

k<l

wkl
. (11)

Node2vec-3 (N2V-3): If the network is undirected, without self-loops, multiple edges

and β = γ, θ > 0, with equal weights wij , the stationary distributions for nodes and

edges are given by (10) [26]. With small θ, the walk approaches the non-backtracking

random walk avoiding 2-hop redundancy in the sample.

Node2vec-4 (N2V-4): We consider next the combination of the last two schemes,

with β = γ, θ > 0 and weights wij dependent on the attributes of i and j. In this

setting, one major technical hurdle is that, unlike the settings above, there is no

explicit formula for the stationary distributions. Analogous to the stationary distri-

butions for N2V-3 matching the usual RW in the stationary regime, it is expected

that especially in the small θ setting, the stationary distributions can still be ap-

proximated by those in (11). We explore the efficacy of these approximations for

moderate size synthetic networks below.

Node2vec-5 (N2V-5): In this variant the weights wij are equal to 1 and θ, γ and β

are different. To enhance the exploration of the network to sampled nodes which are

further away from the previous visited nodes, we consider the case θ < γ < β. The

stationary distributions in this case are not known and we will use the empirical

distribution obtained through simulations.

Node2vec-6 (N2V-6): This is the more general variant extending N2V-5 to have

weights. Again, the most interesting case is θ < γ < β. As in N2V-5 the stationary

distributions are unknown. However, we include this sampling scheme for a full

evaluation of the performance of N2V. We believe that for the network model an

approximation can be obtained for stationary distributions through the resolvability

of the model classes P and U . Due to the technical nature of the problem, it is

outside the scope of this paper, and will be considered in a future work.

For comparison to RWs, we will also use the following baseline samplings. These

can be viewed as “ideal” for sampling purposes and correspond to the limiting

distributions of some RWs.

Node Sampling (NS). NS sampling requires full access to the network and is

unavailable for many real networks. In the classical NS, nodes are chosen indepen-

dently and uniformly from the network with replacement.

Edge Sampling (ES). In the classical ES, edges are chosen independently and

uniformly from the network with replacement. Since ES selects edges rather than

nodes to populate the sample, the node set is constructed by including both incident

nodes in the sample when a particular edge is sampled.
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Estimation of Attribute Distributions and Homophily Measures
We consider here estimation in the case of discrete-valued attributes; the case of

continuous-valued attributes is discussed at the end of this work. Our estimators of

quantities of interest will be based on one of the following two general estimators.

The first estimator is for the proportion p(A) of nodes i with a certain charac-

teristic A(i) taking value A. The characteristic takes discrete values and could be

the discrete attribute ai = a(i) itself, the degree di = d(i), the combination of the

latter two, etc. The estimator of p(A) for a random walk is defined as follows. Run

a random walk (any of the sampling schemes described above) for n steps and let

is denote the sth node sampled by the random walk, for 1 ≤ s ≤ n. Since nodes are

sampled with replacement and with probabilities πi in the stationary regime, the

proportion p(A) can be estimated as

p̂(A) =
1

Nn

n∑
s=1

1{A(is) = A}
πis

, (12)

where 1{E} = 1 if E is true and 0 otherwise [27] (Chapter 5). If the total number

of nodes N is unknown, its estimator is given by N̂ = (1/n)
∑
s 1/πis , and (12)

becomes

p̂(A) =
1∑n

s=1 1/πis

n∑
s=1

1{A(is) = A}
πis

. (13)

A direct application of e.g. (12) yields the following estimators for the proportion

p(k, a) of nodes with degree k and attribute a, the proportion p(a) of nodes with

attribute a, and the conditional proportion p(k|a) = p(k, a)/p(a) of nodes of degree

k having attribute a:

p̂(k, a) =
1

Nn

n∑
s=1

1{d(is) = k, a(is) = a}
πis

, a ∈ A, (14)

p̂(a) =
1

Nn

n∑
s=1

1{a(is) = a}
πis

, a ∈ A, (15)

p̂(k|a) =

n∑
s=1

1{d(is) = k, a(is) = a}
πis

/ n∑
s=1

1{a(is) = a}
πis

, a ∈ A. (16)

We note that the quantities in (14)–(16) are given in terms of the sample obtained

through the random walk used with N estimated by N̂ .

The performance of p̂(A) in (12) and hence the components of the estimators

(14)–(16) can be assessed through their MSE. For fixed A, the MSE of p̂(A) is

given by E[(p̂(A) − p(A))2]. In the stationary regime, p̂(A) in (12) is an unbiased

estimator of p(A) and the MSE is equal to the variance V [p̂(A)]. The variance

of p̂(A) can be related to the spectral gap of the RW. More specifically, let P

be the associated transition matrix of the random walk with eigenvalues (real by

reversibility): 1 = λ1 ≥ λ2 ≥ . . . ≥ λN ≥ −1. The spectral gap is defined as
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δ = 1 − λ2. Equivalently, the relaxation time of the RW is the reciprocal of the

spectral gap. A larger spectral gap implies a faster convergence of the RW to its

stationary distribution. From [28] (Proposition 4.29), we have

V (p̂(A)) ≤ 2Λ(A)

δn

(
1 +

δ

2n

)
, (17)

where Λ(A) =
∑N
i=1 1{A(i) = A}/(N2πi). The error in estimating the proportion

of nodes with characteristic A is thus proportional to the inverse of the spectral gap

and Λ(A); the latter is small if the probability of sampling nodes with characteristic

A is large. We will see in Section Experiments that for N2V-2, if edge weights wij

are inversely related to the concordance of the attributes, thus encouraging the walk

to explore vertices with different attributes, then in some settings, this increases δ

and decreases Λ(a) (for attributes with small proportions), resulting in a smaller

variance of the estimator for the proportion p(a) of nodes with attribute a.

The second estimator is for the proportion p(B) of edges (i, j) with a certain

characteristic B(i, j) taking value B. The values B are assumed to be discrete. For

the random walk considered above, since edges are sampled with probabilities πij

in the stationary regime, the proportion p(B) can be estimated similarly to (12) as

p̂(B) =
1

(n− 1)|E|

n−1∑
s=1

1{B(is, is+1) = B}
πis,is+1

(18)

and if needed, the number of edges as

|̂E| = 1

n− 1

n−1∑
s=1

1

πis,is+1

. (19)

A direct application of (18)–(19) is to estimation of homophily measures Da and

Haa′ in (2) and (3) as:

D̂a = |̂Eaa|
/((|̂Va|

2

)
p̂

)
, Ĥaa′ = |̂Eaa′ |

/(
|̂Va|̂|Va′ |p̂), (20)

where |̂Va| = N̂ p̂(a), p̂ = |̂E|/
(|̂N |

2

)
and

|̂Eaa′ | =
1

n− 1

n−1∑
s=1

1{(a(is), a(is+1)) = (a, a′) ∨ (a(is), a(is+1)) = (a′, a)}
πis,is+1

, (21)

where a, a′ ∈ A. We note again that the quantities in (19)–(21) are given by the

sample obtained through the respective random walk used. We are not aware of the

results of the type (17) to assess the variability of the estimator p̂(B) in (18).

In terms of complexity of the learning framework, the random walks considered in

this work are computationally efficient in terms of both space and time requirements

[18]. For instance, for each visited node, we need to check the immediate neighbors

and their attributes. For the second order random walks (N2V-3, -4, -5 and -6), we
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Figure 5 Boxplots of 500 estimates of the attribute distribution under model class P (α, µ, f)
with homophily where N = 2000, α = 0.2, µ = (0.7, 0.2, 0.1), f(a, a) = 0.8, f(a, a′) = 0.1,
a 6= a′ = 1, 2, 3 and m = 2. The sample size for each sampling method is 0.15N . N2V-2
(wij = 0.3 if nodes have equal attributes and 1 otherwise); N2V-3 (θ = 10−3, β = γ = 1), N2V-4
(θ = 10−3, β = γ = 1, wij = 0.3 if nodes have equal attributes and 1 otherwise), N2V-5
(θ = 10−3, γ = 0.1, β = 1), N2V-6 (θwij = 10−3, γwij = 0.1, and βwij = 0.3 if nodes have
equal attributes and 1 otherwise). The red dotted lines represent the true values p(a), a = 1, 2, 3.

need additionally to keep track of the interconnections between the neighbors of

the current visited node, however, the average degree of the graph is usually small

for most real world networks. The proposed estimators are obtained from simple

weighted sample statistics.

Experiments
In this section, we assess the performance of the sampling methods and estimators in

learning the attribute distribution, degree distribution per attribute and homophily

measures on synthetic and real-world networks with discrete attributes.

Synthetic Network with Homophily

We consider the model class P (α, µ, f) with N = 2000 nodes and 3 discrete at-

tributes. In the generation of the network, each node that enters the system has

attribute 1, 2 or 3 with probabilities µ1 = 0.7, µ2 = 0.2, µ3 = 0.1, respectively, and

connects to m = 2 nodes proportional to (1), where f(a, a) = 0.8, f(a, a′) = 0.1,

a, a′ = 1, 2, 3, a 6= a′. We investigate the effect of homophily in the estimation of

the quantities of interest in a controlled environment for the two most interesting

network topologies: sublinear (α = 0.2) and linear (α = 1).

Attribute Distribution

Setting 1 (α = 0.2): The evaluation of the several sampling methods in learning

the attribute distribution using (15) assuming N unknown is shown in Fig. 5. Each

boxplot is constructed from the results of 500 estimates. The length of each walk

is 0.15N . MHRW has an important property that the stationary distribution is

uniform over all the nodes. Thus, in principle, MHRW is equivalent to RNS of the

network for an infinite RW. In practice, MHRW typically requires sample sizes of

O(N) to achieve the stationary distribution [29]. It is challenging to use MHRW

for large scale networks with millions of nodes, where typical sample size is much

smaller than the network size. Networks with a strong homophily are problematic

in this case since MHRW tends to get stuck in nodes with the same attributes. The
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Table 4 The variation of spectral gap (δ) and Λ(3) from the bound of the variance of p̂(3) under
model class P (α, µ, f) and sampling method parameters as described in Fig. 5.

MH N2V-1 N2V-2 N2V-3 N2V-4 N2V-5 N2V-6
spectral gap (δ) 0.064 0.137 0.110 0.359 0.421 0.380 0.420

Λ(3) 0.102 0.149 0.116 0.149 0.120 0.150 0.120

Table 5 Empirical standard deviation of p̂(3), and the variation of spectral gap (δ) and Λ(3) (from
the bound of the variance of p̂(3)) with N2V-2 (wij = 1, a(i) 6= a(j)) under model class P (α, µ, f)
where N = 2000, α = 0.2, µ = (0.7, 0.2, 0.1), f(a, a) = 0.8, f(a, a′) = 0.1, a 6= a′ = 1, 2, 3 and
m = 2.

wij , a(i) = a(j) 0.05 0.25 0.5 0.75 1 1.25 1.5
s.d. 0.070 0.054 0.058 0.059 0.062 0.073 0.075

spectral gap (δ) 0.027 0.098 0.1344 0.139 0.137 0.130 0.122
Λ(3) 0.142 0.115 0.124 0.137 0.149 0.160 0.171

classical variant of node2vec, N2V-1, which like MHRW is also attribute agnostic

has the property that the stationary distribution is uniform over all the edges. N2V-

1 is equivalent to RES of the network for an infinite RW. In practice, it suffers from

the same drawbacks of MHRW to a lower extent. The poor performance can also

be explained through the bound of the variance (17). Table 4 shows that MHRW

has the lowest spectral gap while N2V-1 has a high value Λ(3) for attribute 3 (this

is detailed next for N2V-2).

The attribute aware samplers like N2V-2 use node attribute to determine the

next node to add to the sample, by checking the attribute of the node against the

attribute of the last node added to the sample. To simplify the exposition (instead

of wij for nodes i and j), we write waa for the weights of nodes with the same

attributes, and waa′ with different attributes. Table 5 shows the effects of the weights

in the standard deviation of the estimate for N2V-2 for attribute 3. To explain their

differences, we turn to the bound of the variance of the estimator (17). The error

in estimating the proportion of nodes with an attribute a is upper bounded by the

inverse of the spectral gap. If waa is much smaller than waa′ = 1, say waa = 0.05,

then the movements of N2V-2 between different node attributes are very frequent

and exploration within each attribute is insufficient. In this case, the spectral gap

is low creating a bottleneck for approaching the stationary probability. As waa

increases the inter-attribute moves are less frequent, accelerating the convergence

to the stationary distribution. On the other hand, when waa becomes greater or

equal than waa′ , the spectral gap decreases until that N2V-2 hardly transits from

one attribute value to another. The error in estimating the attribute distribution

is also bounded by the quantity Λ(a) which is small if the probability of sampling

nodes with attribute a is large. We also observe from Table 5 the effect of waa on

the value Λ(a) for attribute 3. The tradeoff between δ and Λ(a) explains the smaller

standard deviation for attribute 3 of N2V-2 with waa = 0.25. The convex behavior

of the empirical standard deviation as a function of waa will be explored at the end

of this work in the guidelines for setting the weights of attribute aware samplers.

In N2V-3, the parameter θ of the propensity for the random walk to backtrack

is set close to zero θ = 10−3 such that if the walker arrives at a node with degree

1, it always backtracks in the next time step since this is the only possible move,

and β = γ = 1. In this case, N2V-3 tends to explore better the network, avoiding

the redundancy of nodes in the sample which accelerates the convergence (see the

spectral gap in Table 4). The result is consistent with the non-backtracking RWs on



Antunes et al. Page 17 of 26

0.00

0.25

0.50

0.75

1.00

MH RNSN2V−1 −2 −3 −4 −5 −6 RES
 

p̂
(1

)

Attribute 1

0.00

0.25

0.50

0.75

1.00

MH RNSN2V−1 −2 −3 −4 −5 −6 RES
 

p̂
(2

)

Attribute 2

0.00

0.25

0.50

0.75

1.00

MH RNSN2V−1 −2 −3 −4 −5 −6 RES
 

p̂
(3

)

Attribute 3

Figure 6 Boxplots of 500 estimates of the attribute distribution under model class P (α, µ, f)
with α = 1. See Fig. 5 for the remaining parameters of the model and sampling methods.

regular graphs [30]. In many cases, they find spectral gap “twice as good” compared

to the classical RW, as also in our case.

N2V-4 combines features of both attribute aware and non-backtracking samplers.

We use the same weights and backtracking parameters as in N2V-2 and N2V-3

above. Since the stationary distribution πi in (15) is not known, it is obtained

through simulations. The results show that N2V-4 can provide better estimates

with lower variability compared to N2V-2 and N2V-3. This can be explained by

the increase of the spectral gap while keeping Λ(a) small for attribute values 2 and

3 (see Table 4). We have confirmed the use of the approximation in (11) for the

stationary distribution of N2V-4. The choice is heuristic but the results show very

good accuracy compared to the empirical distribution for this network scenario.

N2V-5 ignores the attributes of nodes while sampling the network. We set θ =

10−3, γ = 0.1 and β = 1, forcing the RW to explore non-common neighbors of the

previous and currently visited nodes. The performance is worse compared with N2V-

4 with the decrease of the spectral gap and the increase of Λ(3) (Table 4). N2V-6 is

the version of N2V-5 with attribute aware sampling. We now set βwij = 0.3 if nodes

have equal attributes and 1 otherwise as in N2V-4 and keep the other parameters

used in N2V-5. There is an improvement of performance, however, its variability is

similar to N2V-4. In both N2V-5 and -6, the stationary distributions used in the

estimation are obtained through simulations.

Setting 2 (α = 1): We next consider the linear model class P (1, µ, f) case, where

µ, f , N and the sampling rate are the same as in Setting 1. The boxplots of 500

estimates for each sampling scheme using (15) are given in Fig. 6. In this case,

the performance of MHRW is worse due to the existent of high degree nodes which

tend to be avoided by MHRW, reducing the spectral gap. Note that high degree ver-

tices increase “conductance” in the network (small world phenomenon) and hence

avoiding them decreases the mixing time of MHRW. For the variants of N2V the

estimates for attributes 2 and 3 tend to be better. This can be explained by the ho-

mophily and preferential attachment in the model which enables different types of

attachment propensities as we now indicate. The attributes with small proportions

2 and 3 will be mainly attracted by the same node attributes. However, due to the

preferential attachment, nodes with attributes from small proportions will also be

partly attracted to the majority proportion of nodes with attribute 1 (see Fig. 1-b).
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Figure 7 Boxplots of 500 estimation errors of the degree distribution per attribute under model
class P (α, µ, f) with homophily where N = 2000, α = 0.2, µ = (0.7, 0.2, 0.1), f(a, a) = 0.8,
f(a, a′) = 0.1, a 6= a′ = 1, 2, 3 and m = 2. The sample size for each sampling method is 0.2N .
N2V-2 (wij = 0.3 if nodes have equal attributes and 1 otherwise); N2V-3 (θ = 10−3, β = γ = 1),
N2V-4 (θ = 10−3, β = γ = 1, wij = 0.3 if nodes have equal attributes and 1 otherwise).

Therefore, the variability in the estimation tends to be smaller for attributes with

lower proportions. The ranking of the performance of sampling methods is the same

as in the sublinear case.

Other settings such as the presence of weak homophily and balanced attributes, i.e.

the distribution of attributes in the network being uniform will be investigated with

real data.

Degree Distribution per Attribute

Setting 3 (α = 0.2): Fig. 7 depicts the boxplots of the estimation error (
∑
k(p̂(k|a)−

p(k|a))2)1/2 of the degree distribution per attribute for a sublinear network from

500 estimates under MHRW, N2V-1 to -4, and baseline sampling methods. Since

the stationary distributions of N2V-5 and -6 are not known and the N2V-5 and -6

performances approach N2V-3 and -4, respectively, we omitted them in the plot. The

number of nodes sampled is 0.2N and the parameters of N2V-3 and 4 are the same

as in Setting 1. N2V-4 achieves the highest performance especially for attributes 2

and 3 (even compared with RES) due to being attribute aware. We use its empirical

stationary distribution and also check the approximation (11) which shows similar

boxplots. On the other hand, MHRW has a poor performance compared with the

baseline RNS. The results for the variants of N2V are consistent with the estimation

of the attribute distribution.

Homophily Measures

Setting 4 (α = 1): The homophily measures are D1 = 1.34, D2 = 3.44, D3 = 4.87,

H12 = 0.28, H13 = 0.37, H23 = 0.56. Fig. 8 shows the estimates of the dyadicity

and heterophilicity using N2V variants with known or approximate stationary dis-

tribution. The estimators in (20) involves the ratio of several quantities which are

sensitive to small deviations. Thus a larger sample size 0.3N is used to reduce the

variability. The other parameters are the same as in Setting 2. We have omitted

MHRW in the plots due to having the worst performance and also the baseline

RNS. For the heterophilicity measure, N2V-4 achieves the lower variability followed

by RES. We note that Ĥaa′ in (20) involves the estimation of the number of edges



Antunes et al. Page 19 of 26

0.0

2.5

5.0

7.5

10.0

N2V−1 N2V−2 N2V−3 N2V−4 RES

 

D
1

 

0.0

2.5

5.0

7.5

10.0

N2V−1 N2V−2 N2V−3 N2V−4 RES

 

D
2

 

0.0

2.5

5.0

7.5

10.0

N2V−1 N2V−2 N2V−3 N2V−4 RES

 

D
3

 

0.0

0.5

1.0

1.5

2.0

N2V−1 N2V−2 N2V−3 N2V−4 RES

 

H
1

2

 

0.0

0.5

1.0

1.5

2.0

N2V−1 N2V−2 N2V−3 N2V−4 RES

 

H
1

3

 

0.0

0.5

1.0

1.5

2.0

N2V−1 N2V−2 N2V−3 N2V−4 RES

 

H
2

3

 

Figure 8 Boxplots of 500 estimates of homophily measures under model class P (α, µ, f) with
homophily where N = 2000, α = 1, µ = (0.7, 0.2, 0.1), f(a, a) = 0.8, f(a, a′) = 0.1,
a 6= a′ = 1, 2, 3 and m = 2. The sample size for each sampling method is 0.3N . N2V-2
(wij = 0.3 if nodes have equal attributes and 1 otherwise), N2V-3 (θ = 10−3, β = γ = 1), N2V-4
(θ = 10−3, β = γ = 1, wij = 0.3 if nodes have equal attributes and 1 otherwise). The red dotted
lines represent the true values.
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Figure 9 Boxplots of the estimates of the attribute distribution under model class P (α, µ, f) with
heterophily where N = 2000, α = 1, µ = (0.7, 0.2, 0.1), f(a, a) = 0.2, f(a, a′) = 0.4,
a 6= a′ = 1, 2, 3 and m = 2. The sample size for each sampling method is 0.15N . N2V-2 (wij = 1

if nodes have equal attributes and 0.8 otherwise), N2V-3 (θ = 10−3, β = γ = 1), N2V-4
(θ = 10−3, β = γ = 1, wij = 1 if nodes have different attributes and 0.8 otherwise). The red
dotted lines represent the true values.

between different attribute nodes, which due to the reduced number of these con-

nections is better estimated with N2V-4 than RES.

Synthetic Network with Heterophily

Attribute Distribution

Setting 6: We consider the model class P (α = 1, µ = (0.7, 0.3, 0.1), f) with

f(a, a) = 0.2, f(a, a′) = 0.4, a, a′ = 1, 2, 3, a 6= a′. The network size and sam-

pling rate are the same as in the synthetic network with homophily (Settings 1 and
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Table 6 Empirical networks characteristics (total number of nodes and edges, attribute types,
dyadicity and heterophilicity measures).

N |E| attribute D1 D2 H12

Wikipedia 1595 2809 male/female 1.0810 1.706 0.710
Blogs 1222 16714 right/left 1.733 1.901 0.189
APS 1281 3064 subfield 1/2 1.491 2.487 0.128

Swarthmore 1517 53725 male/female 1.082 1.052 0.933

2). The network generated is heterophilic with measures D1 = 0.667, D2 = 0.573,

D3 = 0.962, H12 = 1.261, H13 = 1.668 and H23 = 1.378. Fig. 9 gives the estimates

of the attribute distribution under several sampling schemes using (15). With het-

erophily, for attributes aware samplers the weights are higher if nodes have equal

attributes. For N2V-2 and N2V-4 the weights are wij = 1 if nodes have different at-

tributes and 0.8 otherwise. The differences between the different sampling methods

are now smaller. In this case, even though most edges are heterophilic, networks

will also contain edges between nodes of the same attribute type (see Fig. 2-b). This

is specially true for nodes with attribute 1 where locally they connect to few other

nodes with attribute 1, but globally there are many connections between them. This

mixing of different types of edges explains why heterophilic networks can achieve

high overall performance among the different sampling methods. The spectral gap of

the random walks increases and also the quantity Λ(.) decreases which also explains

the results.

Empirical Networks

We analyze four publicly available datasets of real attributed networks from different

domains and with different homophily levels. Table 6 shows some key characteristics

of interest. Wikipedia dataset is a hyperlink network where nodes represent U.S.

politicians with attributes as either male or female. Blogs dataset is a network from

political blogs from the 2004 U.S. election. Nodes represent blog pages and edges

hyper-links between them. Each blog is either right- or left-leaning as attribute. APS

is a scientific network from the American Physical Society where nodes represent

articles from two subfields and edges represent citations. Swarthmore is a university

network with friendship links between users’ pages with attribute gender (male or

female). The estimation of the quantities of interest below are replicated 500 times

for each sampling scheme.

Attribute Distribution

Fig. 10 shows the results of estimation of the attribute distributions using (15) for all

data sets. We investigate only the sampling methods with known (or approximately

computable) stationary distributions. For N2V-3 and -4, we use θ = 10−3, γ = β = 1

through this section. The sample size is 0.15N . Wikipedia has unbalanced attributes

and moderate homophily. For N2V-2 and -4 the weights are wij = 0.75 if nodes

have equal attributes and 1 otherwise. The performance of MHRW with real data

shows again the worst performance. The variants 3 and 4 of N2V presents the

lowest variability. Blogs is an approximately balanced attribute data set with a

significant homophily. The weights for the variants of N2V are wij = 0.3 if nodes

have equal attributes and 1 otherwise. Due to the high density of edges (i.e., the

fraction of existing edges out of all possible edges, |E|/
(
N
2

)
) the performance of
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Figure 10 Boxplots of 500 estimates of the attribute distribution: Wikipedia (N2V-2 and -4:
wij = 0.75 if nodes have equal attributes and 1 otherwise), Blogs (N2V-2 and -4: wij = 0.3 if
nodes have equal attributes and 1 otherwise), APS (N2V-2 and -4: wij = 0.25 if nodes have
equal attributes and 1 otherwise), Swarthmore (N2V-2 and -4: wij = 0.95 if nodes have equal
attributes and 1 otherwise). N2V-3 and -4, θ = 10−3, γ = β = 1. The sample size for each
sampling method is 0.15N . The red dotted lines represent the true values.

N2V-3 is similar to N2V-1. APS is an unbalanced attribute dataset with strong

homophily. In this case wij = 0.25 if nodes have equal attributes and 1 otherwise.

Swarthmore is a dataset which is very weakly homophilic. The diferences between

the sampling methods are less significant where we use wij = 0.95 if nodes have

equal attributes and 1 otherwise. These empirical networks are heterogenous with

respect to homophily complementing the settings considered in the synthetic case. In

[19] we have estimated the attribute distribution of a Facebook webgraph dataset

restricted to pages from four attributes (politicians, governmental organizations,

television shows and companies) where edges represent mutual likes between sites.

Degree Distribution per Attribute

Fig. 11 depicts the estimation error (
∑
k(p̂(k|a) − p(k|a))2)1/2 of the degree distri-

bution for each attribute of Wikipedia and APS. The parameters for the different

sampling methods are the same as for the estimation of attribute distribution with

sample size 0.2N . The degree distributions for both attributes are heavy-tailed in

the two datasets. For the majority attributes the tail exponents are 2.823 and 3,

respectively, for Wikipedia and Blogs. The error in the estimation decreases signif-

icantly with N2V-4, especially for the minority attribute.

Homophily Measures

The dyadicity and heterophilicity measures using (20) are given in Fig. 12 for

Wikipedia and Blogs. Only N2V variants have been considered in the evaluation

with the same parameters as above and sample size 0.3N . The performance of the

samplings methods for Wikipedia are in line with the synthetic model with discrete

attribute set. The high density of edges in Blogs, as discussed above, explains the

inferior performance of N2V-3 similar to N2V-1 especially in the estimation of H12.
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Figure 11 Boxplots of the estimation error of the degree distribution per attribute: Wikipedia
(N2V-2 and -4: wij = 0.75 if nodes have equal attributes and 1 otherwise), APS (N2V-2 and -4:
wij = 0.25 if nodes have equal attributes and 1 otherwise). N2V-3 and -4, θ = 10−3, γ = β = 1.
The sample size for each sampling method is 0.2N .
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Figure 12 Boxplots of the estimates of homophily measures: Wikipedia (N2V-2 and -4:
wij = 0.75 if nodes have equal attributes and 1 otherwise), Blogs (N2V-2 and -4: wij = 0.3 if
nodes have equal attributes and 1 otherwise). N2V-3 and -4, θ = 10−3, γ = β = 1. The sample
size for each sampling method is 0.3N . The red dotted lines represent the true values.

Extensions and Future Directions
How to Sample the Network and set the Sampling Method Parameters?

Here are some guidelines on how to sample and learn the attribute functionals of a

network. If the homophily level is unknown (or even if it is not known if the network

is homophilic), the network should be sampled with N2V-3 to estimate the dyadic-

ity and heterophilicity measures. As seen from our experiments the backtracking

parameter should be close to zero and the other parameters equal to one. In the

case that the sampled network indicates that the network is homophilic, we propose

the following approach to set the initial edge weights of attribute aware samplers

(N2V-2 and N2V-4) to estimate the attribute distribution (and additionally the

degree distribution). If dyadicity is, say, greater than 1.5 and heterophilicity is less

than 0.5, then set the weights to wij = 0.3 if nodes have equal attributes and 1

otherwise. For lower homophily levels, set wij = 0.7 if nodes have equal attributes.
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(In the case of N2V-4, additionally the backtracking parameter should be close to

zero.) As observed in the Section Synthetic Network with Homophily (Setting 1),

the empirical standard deviation of the estimator of the attribute distribution as

a function of the weights wij (when nodes have equal attributes) is convex. Thus,

the weights can then be tuned in practice as follows if feasible. (1) Fix the initial

set of weights as described above and a minority attribute, and run n (say, greater

than 10) independent attribute aware samplers for a number of steps and obtain

the empirical standard deviation of the n estimates of the proportion of the mi-

nority attribute; (2) The weights of the n samplers are then increased (decreased)

with increment ∆ and run again to compute the empirical standard deviation; (3)

The previous step is repeated until an inflection point of the empirical standard

deviation is reached and the “optimal“ weight is outputted.

Continuous Attributes

The estimators (12) and (18) were defined for node and edge characteristics that

are discrete. But they have natural continuous analogues. More specifically, in con-

nection to (12), assume that the characteristic A(i) values are such that A ∈ Rd.
Then, we expect the density g(A) to be estimated by the kernel smoothing as

ĝ(A) =

n∑
s=1

K

(
A−A(is)

h

)
1

hd
w̃s, (22)

where h > 0 is a bandwidth, K : Rd → R is a kernel function, and the weights w̃s
satisfy

w̃s ∝
1

πis
,

n∑
s=1

w̃s = 1. (23)

For the density g(a) of continuous attributes a(i) ∈ R, the estimator (22) was

explored briefly in synthetic and real networks in our conference paper [19].

Similarly, the continuous analogue of (18) is

ĝ(B) =

n−1∑
s=1

K

(
B −B(is, is+1)

h

)
1

hd
w̃s,s+1, (24)

where K and h are as in (22), and the weights w̃s,s+1 satisfy

w̃s,s+1 ∝
1

πis,is+1

,

n−1∑
s=1

w̃s,s+1 = 1. (25)

Exploring (22) and (24) further is left for future work. For the attribute aware

samplers the weights can be taken as wij = |a(i) − a(j)|b, which allows moving

between similar attribute values of nodes but also giving more weight to edges with

different values. The choice of b is motivated by similar arguments as in the case of

discrete attributes. If the weights between edges of different groups are too large,

then the convergence is decelerated because exploration within the same group

attribute is not sufficient due to the inter-group moves.
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Future Directions

We expect to show that for the parameter m ≥ 2 in model class P , the networks are

‘expanders’ in the sense that the mixing time of RWs on the network is of a much

smaller order than the network size (typically logarithmic in network size) [31, 32].

This would indicate that, although explicitly finding the stationary distribution is

infeasible in most cases (e.g. in N2V-4,5,6 discussed above), it can be approximated

by observing the RW for a relatively small number of steps. A description of the

local limits of neighborhoods of typical vertices in the network [33, 34, 35] will

then provide tractable recursive distributional equations (e.g. [36] for Pagerank

distribution) characterizing the limiting empirical stationary distribution of the

RW (as the network size grows). This representation can be exploited to analyze

detailed behavior of this limiting distribution including tail exponents, means, etc.

Random walks are also closely tied to ranking mechanisms such as the Pagerank

centrality, and we plan to study the impact of the parameters driving the random

walk on such centrality scores, thus looping back to one of the central motivations

for studying attributed networks namely fairness of ranking mechanisms [12]. Other

questions, including learning joint distributions of the multivariate attribute distri-

butions, both in terms of developing synthetic models, as well as real world data

will also be considered. We considered simple time snapshots of the network pro-

cess, without directionality information, for estimation in this work, but in future

work it will be interesting to exploit the temporality and directionality in network

data. Finally, there has been significant recent interest in incorporating higher order

interactions (network data and models largely hinge on binary or pairwise interac-

tions) in the evolution of networks and the impact of dynamics such as percolation

and epidemics resulting from such interactions [37, 38, 39, 40, 41, 42]. Exploring

versions of such questions incorporating attribute information suggests fascinating

new directions of research.

Conclusions
In this paper, we developed a statistical framework for learning attribute functionals

through sampling in networks with homophily. First, we proposed a generalization

of the preferential attachment model with homophily (model classP ). We described

a related model (model class U ), that is significantly more amenable to analysis,

formalizing the notion of resolvability, which provides explicit information (degree

distribution of an attribute, homophily and heterophily statistics) for model classP
by using model class U . Second, we introduced link trace samplers (random walks)

with weights for networks with restricted access that explore better the attribute

space (attributed aware). Third, estimators that correct the bias of the considered

sampler methods were proposed for the several attribute and geometric quanti-

ties of interest. Fourth, we showed experimental results for synthetic (using model

class P ) and a variety of real world datasets, demonstrating that attribute aware

samplers are more efficient and outperform attribute agnostic random walks sam-

plers for several network settings. Finally, we presented extensions of the developed

framework including continuous attributes and directions for future work.
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10. Esṕın-Noboa, L., Karimi, F., Ribeiro, B., Lerman, K., Wagner, C.: Explaining classification performance and

bias via network structure and sampling technique. Applied Network Science 6(79) (2021)

11. Wagner, C., Singer, P., Karimi, F., Pfeffer, J., Strohmaier, M.: Sampling from social networks with attributes.

In: Proceedings of the 26th International Conference on World Wide Web. WWW ’17, pp. 1181–1190, Republic

and Canton of Geneva, CHE (2017)
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